亞麻(Linum usitatissimum L.)是一年生的二倍體自花授粉植物,在中國、加拿大和印度廣泛種植[1]。它可分為纖維用亞麻和油用亞麻,是纖維和油脂兼用型的作物。油用亞麻簡稱胡麻,含有多種脂肪酸,其中α-亞麻酸(ALA)含量高達(dá) 50%。由于其豐富的營養(yǎng)特性,亞麻已經(jīng)成為飲食和疾病研究領(lǐng)域日益關(guān)注的焦點(diǎn)。近年來,全球范圍內(nèi)極端天氣日益頻發(fā),加劇了干旱地和鹽堿地的形成。因此,要實(shí)現(xiàn)農(nóng)業(yè)的可持續(xù)發(fā)展,培育和篩選耐干旱和耐鹽堿的亞麻品種是提高其產(chǎn)量和充分利用逆境土地的有效途徑。
雖然亞麻喜涼爽濕潤氣候,耐寒、耐旱、耐貧瘠,在含鹽量0.2%以下的堿性土壤亦能栽培,但是土壤缺水和鹽堿化依然會對亞麻的產(chǎn)量、含油量、脂肪酸組分以及纖維的質(zhì)量產(chǎn)生重大影響[2-6]。亞麻比其他許多油料作物都更耐旱,但它的蒸騰系數(shù)很高,因此會損失大量水分[7]。劉瑩瑩等[8]發(fā)現(xiàn),亞麻在干旱脅迫下,不同生育時期的干物質(zhì)積累量與產(chǎn)量呈顯著正相關(guān)關(guān)系,影響亞麻籽粒產(chǎn)量的主導(dǎo)因子是千粒重。Quéro等[9]研究發(fā)現(xiàn),b-氨基丁酸(b-aminobutyric acid,BABA)誘導(dǎo)了亞麻的干旱響應(yīng)過程。BABA會引起亞麻葉片中溶質(zhì)含量的重組,導(dǎo)致脯氨酸和非結(jié)構(gòu)性碳水化合物的積累,使亞麻更耐干旱。土壤鹽堿化會導(dǎo)致亞麻發(fā)芽和出苗延遲、幼苗存活率低、生長發(fā)育不穩(wěn)定以及減產(chǎn)。通過對亞麻的種質(zhì)資源進(jìn)行鹽堿脅迫,根據(jù)生物量、發(fā)芽率、幼苗性狀和產(chǎn)量篩選得到一批耐鹽堿品系[10-14]。為了解析亞麻耐鹽性的遺傳基礎(chǔ),Yu等[15]利用深度測序技術(shù)分析了3種脅迫條件下樣本中的小RNA和降解物。研究發(fā)現(xiàn),miR398a和miR530這2個miRNA與亞麻的鹽脅迫耐受性有關(guān)。將亞麻在堿-鹽脅迫、中性鹽脅迫和堿性脅迫下處理[16]發(fā)現(xiàn),在中性鹽脅迫下,碳水化合物代謝受到影響;在堿-鹽脅迫下,光合作用和對生物刺激的反應(yīng)受到嚴(yán)重影響。堿-鹽脅迫下調(diào)控的差異表達(dá)基因多于堿性鹽脅迫或中性鹽脅迫下調(diào)控的差異表達(dá)基因,表明有更多的基因參與調(diào)控堿-鹽脅迫途徑。
植物中存在一個復(fù)雜而精細(xì)的信號調(diào)控網(wǎng)絡(luò)應(yīng)對干旱、高鹽和低溫等環(huán)境脅迫,通過調(diào)控不同信號網(wǎng)絡(luò)之間的轉(zhuǎn)錄因子和信號轉(zhuǎn)導(dǎo)的蛋白酶類參與脅迫應(yīng)答。不同的環(huán)境脅迫下,特定的轉(zhuǎn)錄因子通過與啟動子順式作用元件相結(jié)合激活或抑制下游靶基因的表達(dá),在信號轉(zhuǎn)導(dǎo)過程中發(fā)揮著關(guān)鍵作用。目前已鑒定出多個參與非生物脅迫調(diào)控的轉(zhuǎn)錄因子,如NCED、LEA、DREB、MYB/C、ABREs和AP2/ERF轉(zhuǎn)錄因子[17-18]。其中,AP2/ERF類轉(zhuǎn)錄因子是調(diào)控植物生長發(fā)育和脅迫響應(yīng)的關(guān)鍵調(diào)節(jié)因子[5,19-22],與植物生長發(fā)育[23-24]、生長激素[25-27]、低溫[28]、干旱[29-30]以及高鹽[31-34]的脅迫應(yīng)答等密切相關(guān)。
AP2/ERF是植物轉(zhuǎn)錄因子最大的家族之一[35],已從多種植物中鑒定出AP2/ERF轉(zhuǎn)錄因子[36],如擬南芥、水稻[37]、小麥[38]、大豆[39]和葡萄[40]。AP2/ERF包含1個或2個非常保守的AP2/ERFDNA結(jié)合域(DNA-binding domain),至少包含一個高度保守的AP2/ERFDNA結(jié)合結(jié)構(gòu)域。大約由60~70個氨基酸殘基組成,可直接與下游靶基因啟動子上的GCC盒和/或脫水反應(yīng)元件(DRE)/C-重復(fù)元件(CRT)等順式作用元件相互作用[36]。根據(jù)AP2/ERFDNA結(jié)合結(jié)構(gòu)域的數(shù)量和相似性,可分為5個亞家族:AP2(APETALA2)、RAV(與ABI3/VP1有關(guān))、DREB(脫水反應(yīng)元件結(jié)合蛋白)、ERF(乙烯反應(yīng)因子)和其他因子[41]。其中AP2家族蛋白擁有2個重復(fù)的AP2結(jié)構(gòu)域[42]。近年來,很多研究表明過表達(dá)AP2/ERF類轉(zhuǎn)錄因子在植物的耐旱和耐鹽性中具有重要作用[43-45]。水稻(Oryzasativa.L.)OsERF83是一個定位于細(xì)胞核的轉(zhuǎn)錄因子,在干旱和脫落酸(ABA)脅迫時被誘導(dǎo),過表達(dá)OsERF83可以顯著提高轉(zhuǎn)基因水稻的抗旱性,并增強(qiáng)了光化學(xué)效率[46]。ZmERF21(ZeamaysL.)在玉米中過表達(dá)顯著增加了干旱條件下的葉綠素含量和抗氧化酶的活性,ZmERF21可能通過與潛在靶基因的啟動子結(jié)合,直接調(diào)節(jié)與激素(乙烯、脫落酸)和Ca信號相關(guān)的基因以及其他應(yīng)激響應(yīng)基因的表達(dá),從而增強(qiáng)玉米幼苗的耐旱性[47]。陸地棉GhERF13.12(Gossypiumhirsutum)在擬南芥中異源表達(dá)可以增強(qiáng)轉(zhuǎn)基因植物的耐鹽性,同時上調(diào)ABA信號傳遞、脯氨酸生物合成和ROS清除途徑的相關(guān)基因的表達(dá)。此外,沉默GhERF13.12導(dǎo)致棉花對鹽脅迫的耐受性降低[48]。從耐鹽甘薯系(Ipomoea batatas (L.) Lam.)ND98中克隆了一個AP2/ERF基因IbRAP2-12,在擬南芥中異源表達(dá)IbRAP2-12可以增強(qiáng)鹽脅迫和干旱脅迫的耐受性。在鹽和干旱脅迫下,參與ABA信號、JA信號、脯氨酸生物合成和活性氧(ROS)清除途徑中的基因在IbRAP2-12過表達(dá)株系中被顯著上調(diào)[49]。
WRINKLED1(WRI1)是AP2/ERF類轉(zhuǎn)錄因子家族成員,調(diào)節(jié)碳在糖酵解和脂肪酸生物合成途徑之間的分配[50],之前有很多研究表明AtWRI1或WRI1的同源基因可以顯著提高轉(zhuǎn)基因植物種子的含油量[51-55],但是在植物耐逆方面的功能作用還鮮有報道。前期我們從亞麻中克隆了一個WRINKLED1的同源基因LuWRI1a,蛋白序列分析LuWRI1a包含2個AP2的DNA結(jié)合域,屬于AP2轉(zhuǎn)錄因子家族[56]。通過分析LuWRI1a的順式作用元件,發(fā)現(xiàn)含有響應(yīng)光、干旱、低溫和激素等多個非生物脅迫應(yīng)激元件。本研究通過對LuWRI1a過表達(dá)轉(zhuǎn)基因植株進(jìn)行NaCl鹽脅迫和PEG-6000模擬干旱脅迫處理,測定各項生長指標(biāo)和生理指標(biāo),分析轉(zhuǎn)錄因子LuWRI1a在亞麻鹽脅迫和干旱脅迫應(yīng)答反應(yīng)中的功能,有助于揭示AP2/ERF類轉(zhuǎn)錄因子在逆境環(huán)境下的表達(dá)調(diào)控機(jī)制,為亞麻耐擬品種的改良提供新的候選基因。
1 材料與方法
1.1 試驗(yàn)材料
供試材料為亞麻(Linum usitatissimum)栽培品種隴亞10號和LuWRI1a過表達(dá)T3代純合轉(zhuǎn)基因株系LuWRI1a-OX-X,種子由甘肅省農(nóng)業(yè)科學(xué)院作物研究所亞麻研究室提供。
1.2 LuWRI1a過表達(dá)亞麻株系的獲得
以非轉(zhuǎn)基因“隴亞10號”(野生型)為陰性對照。通過農(nóng)桿菌介導(dǎo)法轉(zhuǎn)化隴亞10號,將包含重組質(zhì)pE101-BASTA-LuWRI1a的農(nóng)桿菌GV3101侵染亞麻下胚軸,轉(zhuǎn)化方法參照文獻(xiàn)[57]。先后在不定芽誘導(dǎo)培養(yǎng)基和生根培養(yǎng)基中進(jìn)行培養(yǎng)[58],每2周更換1次培養(yǎng)基,直至獲得完整植株,收獲T0代種子。將T0代種子播種在含有10mgmL-1Basta(Sigma Aldrich)的1/2MS培養(yǎng)基上,取抗性苗葉片用CTAB法提取DNA,用表達(dá)載體上的bar基因序列設(shè)計特異引物進(jìn)行PCR檢測,收獲T1代種子。通過Basta篩選和PCR檢測鑒定陽性植株,直至獲得T3代純合株系,用于后續(xù)試驗(yàn)。
1.3 LuWRI1a 家族成員啟動子分析
從亞麻基因組序列中提取 LuWRI1a 基因起始位置上游 2000 bp 的序列,在PlantCARE數(shù)據(jù)庫(http://bioinformatics.psb.ugent.be/webtools/plantcare/html/)進(jìn)行順式作用元件分析。
1.4 試驗(yàn)處理
將進(jìn)口的丹麥品質(zhì)草炭土和蛭石按3:1的體積混合均勻,取適量混合營養(yǎng)土裝入小花盆中,盆高18cm,直徑15cm。選取籽粒飽滿、大小均勻的亞麻種子約15粒,播種到花盆內(nèi),室溫放置。用1/2Hogland營養(yǎng)液培養(yǎng)1個月,每隔3d澆灌100mL次-1。光照強(qiáng)度為125μmolm-2s-1,光周期為16h/8h(光照/黑暗),將培養(yǎng)4周的幼苗進(jìn)行脅迫處理。試驗(yàn)設(shè)置4個處理,3次重復(fù)。挑選長勢相同的幼苗進(jìn)行如下處理:①鹽脅迫處理:用1/2Hoagland營養(yǎng)液配制200mmolL-1NaCl營養(yǎng)液,每隔3d澆灌100mL;②PEG-6000模擬干旱處理:用1/2Hoagland營養(yǎng)液配制25%PEG營養(yǎng)液,每隔3d澆灌100mL;對照組每隔3d澆灌100mL1/2Hogland營養(yǎng)液。脅迫處理2周后,觀察表型并測定相關(guān)生理指標(biāo)。每個株系選取9株進(jìn)行株高、根長、側(cè)根數(shù)和葉片數(shù)的測定。此外,每組不同處理的材料隨機(jī)挑選3株亞麻,剪取根部組織和地上組織,每個株系取3個重復(fù)。液氮速凍后于-80℃冰箱儲存。
1.5 測定與方法
脅迫處理2周后,使用蘇州科銘生物試劑盒測定超氧化歧化酶(Super oxide dismutase,SOD)活性、過氧化氫酶(Catalase,CAT)活性、丙二醛(Malondialdehyde,MDA)含量以及抗壞血酸過氧化物酶(Ascorbate peroxidase,APX)。。
1.6 超聲微波協(xié)同提取法引物合成及基因表達(dá)分析
根據(jù)本研究室公布的亞麻基因組序列(NCBI,http://www.ncbi.nlm.nih.gov/,登錄號為QMEI02000000)CDS序列以及蛋白質(zhì)序列(https://doi.org/10.6084/m9.figshare.13614311.v3),利用Primer5.0設(shè)計鑒定陽性植株的PCR引物和熒光定量引物。利用qRT-PCR方法檢測WRI1以及耐逆相關(guān)的4個關(guān)鍵基因LuAREB(L.us.o.m.scaffold233.70)、LuDREB(L.us.o.m.scaffold284.37)、LuLEA(L.us.o.m.scaffold47.25)、LuNCED(L.us.o.m.scaffold66.130)在對照和轉(zhuǎn)基因株系中的表達(dá)模式[59]。以甘油醛-3-磷酸(GAPDH,Glyceraldehyde3-phosphatedehydrogenase)為內(nèi)參基因。由上海生物化工公司合成所有引物(表1)。實(shí)時熒光定量PCR方法參照文獻(xiàn)[59]。
表1 PCR引物
1.7 數(shù)據(jù)分析
用Microsoft Excel 2010程序進(jìn)行原始數(shù)據(jù)的整理,用SPSS 20.0軟件進(jìn)行數(shù)據(jù)整理及統(tǒng)計分析。利用GraphPad Prism8. 0軟件作圖。
2 結(jié)果與分析
2.1 LuWRI1a 啟動子順式作用元件分析
應(yīng)用PlantCARE軟件對基因啟動子區(qū)進(jìn)行分析(圖1)發(fā)現(xiàn),pLuWRI1a含有豐富的順式作用元件,除了含有TATA-BOX、CAAT-box等核心功能響應(yīng)元件外,還包含多個其他類型的順式作用元件。根據(jù)功能注釋可分為與光響應(yīng)相關(guān)的順式作用元件(ACE、AE-box、GT1-motif、Box4和Gap-box),與激素響應(yīng)有關(guān)的順式作用元件(TGACG-motif、CGTCA-motif和TCA-element),與發(fā)育相關(guān)的元件(MBSI、O2-site),以及與非生物脅迫響應(yīng)的相關(guān)元件(MBS、LTR、MYB、MYC和ARE),結(jié)果見表2。因此推測,LuWRI1a可能參與鹽脅迫、干旱等非生物逆境脅迫響應(yīng)等表達(dá)調(diào)控途徑。
圖1 亞麻LuWRI1a啟動子順式作用元件
表2 LuWRI1a 啟動子順式作用元件的推測功能
2.2 LuWRI1a轉(zhuǎn)基因亞麻的獲得和分子鑒定
通過農(nóng)桿菌介導(dǎo)法將過表達(dá)載體P101--BASTA-LuWRI1a轉(zhuǎn)化亞麻栽培品種隴亞10號的下胚軸,獲得轉(zhuǎn)化苗(圖2),使用載體上的bar基因特異引物對轉(zhuǎn)化苗進(jìn)行PCR鑒定(圖3-A),獲得7個轉(zhuǎn)基因株系。根據(jù)qRT-PCR的檢測結(jié)果,選擇表達(dá)量較高的3個不同的轉(zhuǎn)基因株系OE-2、OE-20和OE-22進(jìn)行下一步試驗(yàn)(圖3-B)。
圖2 轉(zhuǎn)基因亞麻的獲得
圖3 轉(zhuǎn)基因亞麻的分子鑒定
2.3 轉(zhuǎn)基因植株的耐逆性分析
為進(jìn)一步研究LuWRI1a的耐旱性和耐鹽性,分別用25%的PEG-6000和200mmolL-1的NaCl對野生型亞麻(隴亞10號)和轉(zhuǎn)基因亞麻進(jìn)行2周脅迫處理。結(jié)果顯示,轉(zhuǎn)基因株系的株高、主根長、側(cè)根數(shù)和葉片數(shù)在正常培養(yǎng)條件下與野生型相比均無明顯差異。在200mmolL-1NaCl脅迫下,野生型亞麻株高較低,葉片發(fā)黃,嚴(yán)重干枯,萎蔫程度較轉(zhuǎn)基因株系嚴(yán)重,這表明過表達(dá)LuWRI1a基因亞麻的耐鹽能力比野生型亞麻更強(qiáng)。PEG-6000脅迫處理后,野生型植株和轉(zhuǎn)基因株系均未出現(xiàn)萎蔫,轉(zhuǎn)基因株系葉片部分失綠,表型無明顯差異(圖4)。
圖4 脅迫處理后野生型植株和轉(zhuǎn)基因植株的表型
轉(zhuǎn)基因植株在鹽脅迫處理后,相對株高、側(cè)根數(shù)及葉片數(shù)與野生型相比差異極顯著;在干旱脅迫處理后,各指標(biāo)與野生型相比差異不顯著。表明過表達(dá)LuWRI1a的轉(zhuǎn)基因株系對鹽脅迫的耐受性更高(圖5)。鹽脅迫處理2周后,野生型植株的生長受到了抑制,側(cè)根數(shù)目明顯減少,轉(zhuǎn)基因植株的平均側(cè)根數(shù)相比對照分別提高36.36%、30.91%和23.63%。平均根長分別提高9.46%、15.44%和8.63%,平均葉片數(shù)分別提高18.07%、31.73%和9.64%;干旱脅迫處理2周后,轉(zhuǎn)基因植株與對照相比無顯著差異,平均主根長分別提高3.08%、5.17%和負(fù)0.23%,平均側(cè)根數(shù)分別提高25.9%、22.29%和22.89%,平均葉片數(shù)分別提高5.5%、6.88%和4.59%。
圖5 鹽脅迫和干旱脅迫下轉(zhuǎn)基因植株性狀分析
2.4 非生物脅迫對轉(zhuǎn)基因植株抗氧化物質(zhì)酶活性和MDA含量的影響
超氧化歧化酶(SOD)活性、過氧化氫酶(CAT)活性和抗壞血酸過氧化物酶(APX)活性以及丙二醛(MDA)的含量是植物在耐逆條件下的重要生理指標(biāo)。正常培養(yǎng)后,轉(zhuǎn)基因植株的SOD活性比野生型植株的低,APX 活性比野生型植株的高,CAT 活性和 MDA 含量并無明顯差異。鹽脅迫和干旱脅迫后,3 種抗氧化酶的活性與對照相比極顯著升高,而 MDA 含量極顯著降低。
鹽脅迫處理后,野生型亞麻的SOD活性為112.36Ug-1,轉(zhuǎn)基因亞麻的SOD酶活性分別為133.02、137.21和122.25Ug-1,比野生型提高0.18%、0.22%和0.09%(圖6-A);野生型亞麻的CAT酶活性為37.85Ug-1,轉(zhuǎn)基因亞麻的CAT酶活性分別為45.19、52.62和42.63Ug-1,比野生型提高0.19%、0.39%和0.13%(圖6-B);野生型亞麻的APX酶活性為29.24Ug-1,轉(zhuǎn)基因亞麻的APX酶活性分別為41.19、42.13和40.41Ug-1,比野生型提高0.41%、0.44%和0.38%(圖6-C);野生型亞麻的MDA含量為63.75nmol g-1,轉(zhuǎn)基因亞麻的MDA含量分別為30.11、22.22和33.93nmol g-1,比野生型亞麻降低0.53%、0.65%和0.47%(圖6-D)。
干旱脅迫處理后,野生型亞麻的SOD活性為106.27Ug-1,轉(zhuǎn)基因亞麻的SOD酶活性分別為136.73、149.00和129.02Ug-1,比野生型提高0.28%、0.40%和0.21%(圖6-A);野生型亞麻的CAT酶活性為34.63Ug-1,轉(zhuǎn)基因亞麻的CAT酶活性分別為40.18、38.11和43.63Ug-1,比野生型提高0.16%、0.10%和0.26%(圖6-B);野生型亞麻的APX酶活性為32.74Ug-1,轉(zhuǎn)基因亞麻的APX酶活性分別為41.06、41.61和39.06Ug-1,比野生型提高0.25%、0.27%和0.19%(圖6-C);野生型亞麻的MDA含量為76.95nmol g-1,轉(zhuǎn)基因亞麻的MDA含量分別為60.27、42.08和57.94nmol g-1,比野生型亞麻降低0.22%、0.45%和0.25%(圖6-D)。
圖6 過表達(dá)LuWRI1a亞麻的酶活性測定
2.5 逆境脅迫響應(yīng)基因在轉(zhuǎn)基因亞麻中的表達(dá)分析
為研究 LuWRI1a 在逆境脅迫響應(yīng)中可能的分子機(jī)制,本研究分析了非生物脅迫響應(yīng)途徑中的 4 個關(guān)鍵轉(zhuǎn)錄調(diào)控因子,AREB2( ABA-responsive element binding)、DREB2(dehydration-responsive element binding)、LEA(late embryogenesis-abundant protein)和NCED(9-cis-epoxycarotenoid dioxygenase)在野生型亞麻和轉(zhuǎn)基因亞麻中的表達(dá)水平[60]。通過實(shí)時熒光定量(qRT-PCR)分析表明,在鹽脅迫和干旱脅迫的處理下,這 4 個逆境脅迫相關(guān)基因均上調(diào)表達(dá)(圖 7)。LuAREB2 在正常和逆境脅迫條件下,轉(zhuǎn)基因植株中的表達(dá)量與野生型相比差異極顯著(圖 7-A)。LuDREB2 在正常條件下,野生型和轉(zhuǎn)基因植株中的表達(dá)量沒有明顯差異,在干旱脅迫處理后較對照顯著上調(diào),而在鹽脅迫處理后極顯著上調(diào)(圖 7-B)。LuLEA 在正常培養(yǎng)和鹽脅迫處理后,轉(zhuǎn)基因植株中的表達(dá)量均極顯著高于野生型,但在干旱脅迫處理后,株系間差異不顯著(圖 7-C)。正常條件下和干旱脅迫處理后,LuNCED 較對照無明顯差異,在鹽脅迫處理后,基因的表達(dá)量升高,但株系間差異不顯著(圖 7-D)。表明,在逆境脅迫下,尤其在鹽脅迫下,轉(zhuǎn)基因植株中 LuWRI1a 通過上調(diào) LuAREB、LuDREB、LuLEA 和 LuNCED 等逆境脅迫響應(yīng)基因的表達(dá),來參與調(diào)控亞麻轉(zhuǎn)基因植株的耐逆性。
圖7 脅迫處理下轉(zhuǎn)基因亞麻逆境脅迫相關(guān)基因的表達(dá)分析
3 討論
干旱、高鹽、極端天氣、洪水和病蟲害等各種生物和非生物脅迫對植物的生長和發(fā)育產(chǎn)生負(fù)面影響。目前,非生物脅迫已被認(rèn)為是造成全世界作物損失的主要因素之一,并導(dǎo)致大多數(shù)主要農(nóng)作物產(chǎn)量下降高達(dá)50%[61]。在非生物脅迫下,植物中的轉(zhuǎn)錄因子與脅迫應(yīng)答基因啟動子的順式作用元件結(jié)合,通過在轉(zhuǎn)錄水平上激活或抑制應(yīng)答基因,調(diào)節(jié)逆境脅迫給植物帶來的損傷[5,17]。近年來,AP2/ERF轉(zhuǎn)錄因子家族備受關(guān)注。研究表明,AP2/ERF轉(zhuǎn)錄因子可調(diào)控植物發(fā)育和脅迫響應(yīng)的多種過程,如生殖發(fā)育、細(xì)胞增殖、非生物和生物脅迫響應(yīng)以及植物激素響應(yīng)。因此,闡明AP2/ERF在脅迫信號中的調(diào)控機(jī)制非常重要,可以通過調(diào)控AP2/ERF來提高作物的抗逆性。
WRI1屬于AP2/ERF家族轉(zhuǎn)錄因子,前期WRI1的研究大多集中在種子含油量方面。例如,在擬南芥中過表達(dá)AtWRI1,種子含油量增加大約10%~20%[62]。在玉米中過表達(dá)ZmWRI1,種子含油量提高了大約31%[63],在擬南芥和油菜中過表達(dá)BnWRI1,種子含油量分別增加了約20%和10%[64]。近年來,有一些研究表明WRI還有可能參與植物非生物脅迫信號途徑。大豆GmWRI1a(Glycinemax)啟動子存在乙烯、茉莉酸、赤霉素3種激素響應(yīng)元件,受這3種激素脅迫誘導(dǎo)[65-66],并受ABA、NaCl和糖信號等調(diào)控[67]?;ㄉ?/font>AhWRI1-1基因?qū)?/font>3種非生物脅迫均有響應(yīng)。低溫脅迫下表達(dá)量明顯上調(diào),在干旱脅迫下明顯下調(diào)。AhWRI1-2基因在高鹽、低溫、干旱非生物脅迫下表達(dá)量均有上調(diào)。AhWRI1-1和AhWRI1-2這2個基因可能參與了花生對高鹽、低溫、干旱的抗性調(diào)節(jié)[68]。
生長指標(biāo)方面,鹽脅迫后野生型亞麻萎蔫程度較轉(zhuǎn)基因株系嚴(yán)重,干旱脅迫后表型差異不明顯;轉(zhuǎn)基因植株的相對株高、主根長度、側(cè)根數(shù)目及葉片數(shù)在鹽脅迫和干旱脅迫處理后均升高,尤其在鹽脅迫處理后,轉(zhuǎn)基因植株各指標(biāo)均明顯高于對照,表明過表達(dá)LuWRI1a的轉(zhuǎn)基因株系對鹽脅迫的耐受性更高。這個結(jié)果說明生長抑制是亞麻對鹽脅迫和干旱脅迫的主要反應(yīng)之一,LuWRI1a能抵抗鹽脅迫和干旱脅迫對亞麻生長的抑制。
活性氧(reactive oxygen species,ROS)是指在生物體內(nèi)與氧代謝有關(guān)的、含氧自由基和易形成自由基的過氧化物的總稱。當(dāng)植物在逆境脅迫時,會誘導(dǎo)植物細(xì)胞中活性氧的積累,ROS的過度積累導(dǎo)致會導(dǎo)致細(xì)胞產(chǎn)生氧化應(yīng)激損傷[69],從而進(jìn)一步產(chǎn)生有毒物質(zhì)[70]?;钚匝跚宄赶到y(tǒng)是清除過量的活性氧物質(zhì),維持植物體內(nèi)動態(tài)平衡最有效的機(jī)制[71],一般包括超氧化物歧化酶(SOD)、抗壞血酸過氧化物酶(APX)、過氧化氫酶(CAT),植物通過這些酶類抗氧化劑維持細(xì)胞的正常發(fā)育。通過測定抗氧化物質(zhì)酶活性,發(fā)現(xiàn)脅迫處理后,轉(zhuǎn)基因株系的3種抗氧化酶APX、SOD和CAT的活性比野生型均顯著性升高。丙二醛(MDA)能加劇膜脂損傷,它的含量代表膜脂過氧化的程度[72]。鹽脅迫和干旱脅迫處理后,野生型株系的MDA含量均比處理前升高,而轉(zhuǎn)基因株系的MDA含量均顯著低于野生型。這些結(jié)果表明過表達(dá)LuWRI1a能夠增強(qiáng)在鹽脅迫和干旱脅迫下亞麻的抗氧化能力,通過減輕對細(xì)胞膜造成的氧化損傷,增強(qiáng)耐逆性。
實(shí)時熒光定量(qRT-PCR)分析表明,在鹽脅迫和干旱脅迫的處理下,4個逆境脅迫相關(guān)基因LuAREB2、LuDREB2、LuLEA和LuNCED均上調(diào)表達(dá),說明LuWRI1a可能是通過激活LuAREB2、LuDREB2、LuLEA和LuNCED等逆境脅迫響應(yīng)基因的表達(dá)增強(qiáng)轉(zhuǎn)基因植株的耐逆性。
本研究結(jié)果表明,亞麻轉(zhuǎn)錄因子LuWRI1a啟動子區(qū)含有多個參與非生物脅迫應(yīng)答的響應(yīng)元件。進(jìn)一步挖掘LuWRI1a在逆境脅迫下的的功能,發(fā)現(xiàn)LuWRI1a通過抵抗鹽脅迫和干旱脅迫對亞麻生長的抑制,增強(qiáng)活性氧清除能力、減輕膜脂的氧化損傷,激活逆境脅迫響應(yīng)基因的表達(dá)等途徑,增強(qiáng)了亞麻的耐逆性。
4 結(jié)論
綜上所述,LuWRI1a可能是一個多功能基因,它不僅參與脂肪酸合成代謝途徑,還有可能參與植物非生物脅迫信號途徑。本研究為亞麻耐逆品種改良提供了新的基因資源,為培育亞麻耐逆新品系提供理論依據(jù)。
[1] Huis R, Hawkins S, Neutelings G. Selection of reference genes for quantitative gene expression normalization in flax (Linum usitatissimum L.).BMC Plant Biol, 2010, 10: 14.
[2] Zheng J, Cui B, Yan Y H, Gao B, Wu Y F, Wang H D, Wang P, Xu B Q, Zhao Z, Cao Y, Zhang Y P. Agronomic cultivation measures on productivity of oilseed flax: A review. Oil Crop Sci, 2022, 7: 53–62.
[3] Zare S, Mirlohi A, Saeidi G, Ataii E. Water stress intensified the relation of seed color with lignan content and seed yield components in flax (Linum usitatissimum L.). Sci Rep, 2021, 11: 23958.
[4] Fila G, Bagatta M, Maestrini C, Potenza E, Matteo R. Linseed as a dual-purpose crop: evaluation of cultivar suitability and analysis of yield determinants. J Agric Sci, 2018, 156: 1−15.
[5] Zhang J, Liao J, Ling Q, Xi Y, Qian Y. Genome-wide identification and expression profiling analysis of maize AP2/ERF superfamily genes reveal essential roles in abiotic stress tolerance. BMC Genomics, 2022, 23: 125.
[6] Yadav B, Kaur V, Narayan O P, Yadav S K, Kumar A, Wankhede D P. Integrated omics approaches for flax improvement under abiotic and biotic stress: Current status and future prospects. Front Plant Sci, 2022, 13: 931275.
[7] Paliwal S, Tripathi M K, Tiwari S, Tripathi N, Payasi D K, Tiwari P N, Singh K, Yadav R K, Asati R, Chauhan S. Molecular advances to combat different biotic and abiotic stresses in Linseed (Linum usitatissimum L.): a comprehensive review. Genes (Basel), 2023, 14: 1461.
[8] 劉瑩瑩, 李玥, 吳兵. 胡麻籽粒產(chǎn)量形成對干旱脅迫的響應(yīng)及其模擬模型研究. 作物研究, 2023, 37(1): 14−21.Liu Y Y, Li Y, Wu B. Response of kernel yield formation to drought stress and its simulation modeling in flaxseed. Crop Res, 2023. 37(1): 14−21(in Chinese with English abstract).
[9] Kariuki L W, Masinde P, Githiri S, Onyango A N. Effect of water stress on growth of three linseed ( Linum usitatissimum L.) varieties.Springerplus, 2016, 5: 1−16.
[10] EL-Afry M M, EL-Okkiah S A F, EL-Kady E-S A F, EL-Yamanee G S A. Exogenous application of ascorbic acid for alleviation the adverse effects of salinity stress in flax (Linum usitatissimum L.). Middle East J Agric Res, 2018, 7: 716−739.
[11] Nasri N, Maatallah S, Saidi I, Lachal M. Influence of salinity on germination, seedling growth, ion content and acid phosphatase activities ofLinum usitatissimum L. J Anim Plant Sci, 2017, 27: 517−521.
[12] Datir S. Salt-induced physiological and biochemical changes in two varieties of Linum usitatissimum L. Int J Curr Microbiol Appl Sci, 2015, 4: 296−304.
[13] Demir Kaya M, Day S, Cikili Y, Arslan N. Classification of some linseed (Linum usitatissimum L.) genotypes for salinity tolerance using germination, seedling growth, and ion content. Chilean J Agric Res, 2012, 72: 27−32.
[14] 于瑩, 陳宏宇, 程莉莉, 趙東升, 袁紅梅, 吳廣文, 關(guān)鳳芝. 亞麻 MAPK 基因克隆及鹽堿脅迫下的表達(dá)分析. 東北農(nóng)業(yè)大學(xué)學(xué)報, 2015,46(3): 8.Yu Y, Chen H Y, Cheng L L, Zhao D S, Yuan H M, Wu G W, Guan F Z. Flax MAPK gene cloning and expression analysis under saline and alkaline stress. J Northeast Agric Univ, 2015, 46(3): 8 (in Chinese with English abstract).
[15] Yu Y, Chen H, Yang Y Y, Lou D, Liang C, Yuan H, Wu G W, Xu C. Identification and characterization of differentially expressed microRNAs and target gene related to flax stem development. J Nat Fibers, 2021, 19: 5974−5990.
[16] Guo R, Zhou J, Ren G X, Hao W. Physiological responses of linseed seedlings to iso osmotic polyethylene glycol, salt, and alkali stresses. Agron J, 2013, 105: 764.
[17] 郭晉艷, 鄭曉瑜, 鄒翠霞, 李秋莉. 植物非生物脅迫誘導(dǎo)啟動子順式元件及轉(zhuǎn)錄因子研究進(jìn)展. 生物技術(shù)通報, 2011, 23(4): 16−20.
Guo J Y, Zheng X Y, Zou C X, Li Q L. Progress of abiotic stress-induced promoter cis-elements and transcription factors in plants. Biotechnol Bull, 2011, 23(4): 16−20 (in Chinese with English abstract).
[18] J L Riechmann , J Heard, G Martin, L Reuber, C Jiang, J Keddie, L Adam, O Pineda, O J Ratcliffe, R R Samaha, R Creelman, M Pilgrim, P Broun, J Z Zhang, D Ghandehari, B K Sherman, Yu G. Arabidopsis transcription factors: genome-wide comparative analysis among eukaryotes. Science, 2000, 290: 2105−2110.
[19] Iwase A, Mitsuda N, Koyama T, Hiratsu K, Kojima M, Arai T, Inoue Y, Seki M, Sakakibara H, Sugimoto K, Ohme-Takagi M. The AP2/ERF transcription factor WIND1 controls cell dedifferentiation in Arabidopsis. Curr Biol, 2011, 21: 508−514.
[20] Jofuku K D, den Boer B G, Van Montagu M, Okamuro J K. Control of Arabidopsis flower and seed development by the homeotic gene APETALA2. Plant Cell, 1994, 6: 1211−1225.
[21] Jaglo-Ottosen K R, Gilmour S J, Zarka D G, Schabenberger O, Thomashow M F. Arabidopsis CBF1 overexpression induces COR genes and enhances freezing tolerance. Science, 1998, 280: 104−116.
[22] Yamaguchi-Shinozaki K, Shinozaki K. Improving plant drought, salt and freezing tolerance by gene transfer of a single stress-inducible transcription factor. Novartis Found Symp, 2001, 290: 2105−2110.
[23] Chandler J W, Cole M, Flier A, Grewe B, Werr W. The AP2 transcription factors DORNROSCHEN and DORNROSCHEN-LIKE redundantly control Arabidopsis embryo patterning via interaction with PHAVOLUTA. Development, 2007, 134: 1653−1662.
[24] Aoyama T, Hiwatashi Y, Shigyo M, Kofuji R, Kubo M, Ito M, Hasebe M. AP2-type transcription factors determine stem cell identity in the moss Physcomitrella patens. Development, 2012, 139: 3120−3129.
[25] De Boer K, Tilleman S, Pauwels L, Vanden Bossche R, De Sutter V, Vanderhaeghen R, Hilson P, Hamill J D, Goossens A. APETALA2/ETHYLENE RESPONSE FACTOR and basic helix-loop-helix tobacco transcription factors cooperatively mediate jasmonate-elicited nicotine biosynthesis. Plant Journal, 2011, 66: 1053−1065.
[26] Finkelstein R R, Wang M L, Lynch T J, Rao S, Goodman H M. The Arabidopsis abscisic acid response locus ABI4 encodes an APETALA 2 domain protein. Plant Cell, 1998, 10: 1043−1054.
[27] Lorenzo O, Piqueras R, Sánchez-Serrano J J, Solano R. ETHYLENE RESPONSE FACTOR1 integrates signals from ethylene and jasmonate pathways in plant defense. Plant Cell, 2003, 15: 165−178.
[28] Cook D, Fowler S, Fiehn O, Thomashow M F. A prominent role for the CBF cold response pathway in configuring the low-temperature metabolome of Arabidopsis. Proc Natl Acad Sci USA, 2004, 101: 15243−15258.
[29] Cheng M C, Hsieh E J, Chen J H, Chen H Y, Lin T P. Arabidopsis RGLG2, functioning as a RING E3 ligase, interacts with AtERF53 and negatively regulates the plant drought stress response. Plant Physiol, 2012, 158: 363−375.
[30] Oh S J, Kim Y S, Kwon C W, Park H K, Jeong J S, Kim J K. Overexpression of the transcription factor AP37 in rice improves grain yield under drought conditions. Plant Physiol, 2009, 150: 1368−1379.
[31] Chen X, Guo Z. Tobacco OPBP1 enhances salt tolerance and disease resistance of transgenic rice. Int J Mol Sci, 2008, 9: 2601−2613.
[32] Seo Y J, Park J B, Cho Y J, Jung C, Seo H S, Park S K, Nahm B H, Song J T. Overexpression of the ethylene-responsive factor gene BrERF4 from Brassica rapa increases tolerance to salt and drought in Arabidopsis plants. Mol Cells, 2010, 30: 271−277.
[33] Song C P, Galbraith D W. AtSAP18, an orthologue of human SAP18, is involved in the regulation of salt stress and mediates transcriptional repression in Arabidopsis. Plant Mol Biol, 2006, 60: 241−257.
[34] Schmidt R, Mieulet D, Hubberten H M, Obata T, Hoefgen R, Fernie A R, Fisahn J, San Segundo B, Guiderdoni E, Schippers J H, Mueller-Roeber B. Salt-responsive ERF1 regulates reactive oxygen species-dependent signaling during the initial response to salt stress in rice. Plant Cell, 2013, 25: 2115−2131.
[35] Wessler S R. Homing into the origin of the AP2 DNA binding domain. Trends Plant Sci, 2005, 10: 54−66.
[36] Xu Z S, Cheng M, Li L C, Ma Y Z. Functions and application of the AP2/ERF transcription factor family in crop improvement. J Integr Plant Biol, 2011, 53: 570−585.
[37] 靳鵬, 黃立鈺, 王迪, 吳慧敏, 朱苓華, 傅彬英. 水稻 AP2/EREBP 轉(zhuǎn)錄因子響應(yīng)非生物脅迫的表達(dá)譜分析. 中國農(nóng)業(yè)科學(xué), 2009, 42:3765−3773.Jin P, Huang L Y, Wang D, Wu H M, Zhu L H, Fu B Y. Expression profiling of rice AP2/EREBP transcription factors in response to abiotic stress.Scientia Aguicultura Sinica, 2009. 42: 3765−3773 (in Chinese with English abstract).
[38] Xu Z S, Ni Z Y, Liu L, Nie L N, Li L C, Chen M, Ma Y Z. Characterization of the TaAIDFa gene encoding a CRT/DRE-binding factor responsive to drought, high-salt, and cold stress in wheat. Mol Genet Genomics, 2008, 280: 497−508.
[39] Zhang G, Chen M, Chen X, Xu Z, Guan S, Li L C, Li A, Guo J, Mao L, Ma Y. Phylogeny, gene structures, and expression patterns of the ERF gene family in soybean (Glycine max L.). J Exp Bot, 2008, 59: 4095−4107.
[40] Licausi F, Giorgi F M, Zenoni S, Osti F, Pezzotti M, Perata P. Genomic and transcriptomic analysis of the AP2/ERF superfamily in Vitis vinifera. BMC Genomics, 2010, 11: 1−15.
[41] Sakuma Y, Liu Q, Dubouzet J G, Abe H, Shinozaki K, Yamaguchi-Shinozaki K. DNA-binding specificity of the ERF/AP2 domain of Arabidopsis DREBs, transcription factors involved in dehydration- and cold-inducible gene expression. Biochem Biophys Res Commun, 2002, 290: 998−1009.
[42] Kagaya Y, Ohmiya K, Hattori T. RAV1, a novel DNA-binding protein, binds to bipartite recognition sequence through two distinct DNA-binding domains uniquely found in higher plants. Nucleic Acids Res, 1999, 27: 470−478.
[43] Gao S, Zhang H, Tian Y, Li F, Zhang Z, Lu X, Chen X, Huang R. Expression of TERF1 in rice regulates expression of stress-responsive genes and enhances tolerance to drought and high-salinity. Plant Cell Rep, 2008, 27: 1787−1795.
[44] Zhang G, Chen M, Li L, Xu Z, Chen X, Guo J, Ma Y. Overexpression of the soybean GmERF3 gene, an AP2/ERF type transcription factor for increased tolerances to salt, drought, and diseases in transgenic tobacco. J Exp Bot, 2009, 60: 3781−3796.
[45] Zhang H, Liu W, Wan L, Li F, Dai L, Li D, Zhang Z, Huang R. Functional analyses of ethylene response factor JERF3 with the aim of improving tolerance to drought and osmotic stress in transgenic rice. Transgenic Res, 2010, 19: 809−818.
[46] Eun J S, Woon B S, Hwan K S, Sung S J, Bin Y H, Shic K Y, Kon K J. Overexpression of OsERF83, a Vascular Tissue-Specific Transcription Factor Gene, Confers Drought Tolerance in Rice. Multidiscipl Digital Publish Instit, 2021, 22: 1−20.
[47] Wang Z, Zhao X, Ren Z, Abou-Elwafa S F, Pu X, Zhu Y, Dou D, Su H, Cheng H, Liu Z, Chen Y, Wang E, Shao R, Ku L. ZmERF21 directly regulates hormone signaling and stress-responsive gene expression to influence drought tolerance in maize seedlings. Plant Cell Environ, 2022, 45: 312−328.
[48] Lu L L, Qanmber G , Li J, Pu M L, Chen G Q, Li S D, Liu L, Qin W Q, Ma S Y, Wang Y, Chen Q J, Liu Z. Identification and characterization of the ERF subfamily B3 group revealed GhERF13.12 improves salt tolerance in upland cotton. Frontiers in Plant Science, 2021, 12: 1−15.
[49] Li Y, Zhang H, Zhang Q, Liu Q, Zhai H, Zhao N, He S. An AP2/ERF gene, IbRAP2-12, from sweetpotato is involved in salt and drought tolerance in transgenic Arabidopsis. Plant Sci, 2019, 281: 19−30.
[50] Fei W, Yang S, Hu J, Yang F, Qu G, Peng D, Zhou B. Research advances of WRINKLED1 (WRI1) in plants. Funct Plant Biol, 2020, 47: 185−194.
[51] Cernac A, Benning C. WRINKLED1 encodes an AP2/EREB domain protein involved in the control of storage compound biosynthesis inArabidopsis. Plant J, 2004, 40: 575−585.
[52] Liu J, Hua W, Zhan G, Wei F, Wang X, Liu G, Wang H. Increasing seed mass and oil content in transgenic Arabidopsis by the overexpression of wri1-like gene from Brassica napus. Plant Physiol Biochem, 2010, 48: 9−15.
[53] Yang Y, Munz J, Cass C, Zienkiewicz A, Kong Q, Ma W, Sedbrook J, Benning C. Ectopic expression of WRINKLED1 affects fatty acid homeostasis in brachypodium distachyon vegetative tissues. Plant Physiol, 2015, 169: 1836−1847.
[54] Sun R, Ye R, Gao L, Zhang L, Wang R, Mao T, Zheng Y, Li D, Lin Y. Characterization and ectopic expression of coWRI1, an AP2/EREBP domain-containing transcription factor from Coconut (Cocos nucifera L.) endosperm, changes the seeds oil content in transgenic Arabidopsis thaliana and rice (Oryza sativa L.). Front Plant Sci, 2017, 8: 63.
[55] Ye J, Wang C, Sun Y, Qu J, Mao H, Chua N-H. Overexpression of a transcription factor increases lipid content in a woody perennial Jatropha curcas. Front Plant Sci, 2018, 9: 1479.
[56] Li W, Wang L, Qi Y, Xie Y, Zhao W, Dang Z, Zhang J. Overexpression of WRINKLED1 improves the weight and oil content in seeds of flax (Linum usitatissimum L.). Front Plant Sci, 2022, 13: 1003758.
[57] 陳芳. 亞麻FAD3 基因的克隆及載體構(gòu)建與遺傳轉(zhuǎn)化. 甘肅省農(nóng)業(yè)大學(xué)碩士學(xué)位論文, 甘肅蘭州, 2014.Chen F. Cloning and Vector Construction and Genetic Transformation of Flax FAD3 Gene. MS Thesis of Gansu Agricultural University, Lanzhou, Gansu, China, 2014 (in Chinese with English abstract).
[58] 陳芳, 黨占海, 張建平, 李聞娟, 郝榮楷, 張瓊, 張瑜, 宋軍生. 不同基因型亞麻下胚軸不定芽誘導(dǎo)的研究, 作物雜志, 2014, (3):39−43.Chen F, Dang Z H, Zhang J P, Li W J, Hao R K, Zhang Q, Zhang Y, Song J S. Studies on the induction of adventitious shoots in hypocotyls of flax from different genotypes. Crops, 2014, (3): 39−43 (in Chinese with English abstract).
[59] 李聞娟, 齊燕妮, 王利民, 黨照, 趙利, 趙瑋, 謝亞萍, 王斌, 張建平, 李淑潔. 不同胡麻品種 TAG 合成途徑關(guān)鍵基因表達(dá)與含油量、脂肪酸組分的相關(guān)性分析. 草業(yè)學(xué)報, 2019, 28(1): 138−149.Li W J, Qi Y N, Wang L M, Dang Z, Zhao L, Zhao W, Xie Y P, Wang B, Zhang J P, Li S J. Correlation analysis between the expression of key genes of TAG synthesis pathway and oil content and fatty acid fractions in different caraway varieties. Acta Pratac Sin, 2019. 28(1): 138-149 (in Chinese with English abstract).
[60] 范鑫, 趙雷霖, 翟紅紅, 王遠(yuǎn), 孟志剛, 梁成真, 張銳, 郭三堆, 孫國清. AtNEK6 在棉花旱鹽脅迫響應(yīng)中的表達(dá)分析研究. 中國農(nóng)業(yè)科學(xué), 2018, 51: 4230−4240.Fan X, Zhao L L, Zhai H H, Wang Y, Meng Z G, Liang C Z, Zhang R, Guo S D, SUN G Q. Study on expression analysis of AtNEK6 in response to drought and salt stress in cotton. Scientia Aguicultura Sinica, 2018, 51: 4230−4240 (in Chinese with English abstract).
[61] Fahad S, Bajwa A A, Nazir U, Anjum S A, Farooq A, Zohaib A, Sadia S, Nasim W, Adkins S, Saud S, Ihsan M Z, Alharby H, Wu C, Wang D, Huang J. Crop production under drought and heat stress: plant responses and management options. Front Plant Sci, 2017, 8: 1147.
[62] Cernac A, Benning C. WRINKLED1 encodes an AP2/EREB domain protein involved in the control of storage compound biosynthesis in Arabidopsis. Plant J, 2004, 40: 575−585.
[63] Shen B, Allen W B, Zheng P, Li C, Glassman K, Ranch J, Nubel D, Tarczynski M C. Expression of ZmLEC1 and ZmWRI1 increases seed oil production in maize. Plant Physiol, 2010, 153: 980−987.
[64] Liu J, Hua W, Zhan G, Wei F, Wang X, Liu G, Wang H. Increasing seed mass and oil content in transgenic Arabidopsis by the overexpression of wri1-like gene from Brassica napus. Plant Physiol Biochem, 2010, 48: 9−15.
[65] 邵宇鵬, 楊明明, 包格格, 孫英楠, 楊強(qiáng), 李文濱, 王志坤. 大豆GmWRI1a 基因啟動子克隆及其功能分析. 中國油料作物學(xué)報, 2019, 41:517−523.Shao Y P, Yang M M, Bao G G, Sun Y N, Yang Q, Li W B, Wang Z K. Cloning of soybean GmWRI1a gene promoter and its functional analysis.Chinese Journal of Oil Crop Sciences, 2019, 41: 517−523 (in Chinese with English abstract).
[66] 閆麗, 楊強(qiáng), 邵宇鵬, 李丹丹, 王志坤, 李文濱. 大豆 GmWRI1a 基因啟動子克隆及序列分析. 作物雜志, 2017, (2): 51−58.Yan L, Yang Q, Shao Y P, Li D D, Wang Z K, Li W B. Cloning and sequence analysis of soybean GmWRI1a gene promoter. Crops, 2017, (2): 51−58 (in Chinese with English abstract).
[67] 李丹丹, 閆麗, 常健敏, 王志坤, 李文濱. 大豆GmWRI1 基因在糖,植物激素及鹽脅迫下的表達(dá)分析. 作物雜志, 2015, (4): 41−46.Li D D, Yan L, Chang J M, Wang Z K, Li W B. Expression analysis of soybean GmWRI1 gene under sugar,phytohormone and salt stress. Crops, 2015, (4): 41−46 (in Chinese with English abstract).
[67] 郝翠翠, 花生轉(zhuǎn)錄因子 AhWRI1 基因的克隆與功能研究. 青島科技大學(xué)碩士學(xué)位論文, 山東青島, 2018.Hao C C. Cloning and Functional Study of Peanut Transcription Factor AhWRI1 Gene. MS Thesis of Qingdao University of Science and Technology, Qingdao, Shangdong, China, 2018 (in Chinese with English abstract).
[69] Arias-Moreno D M, Jiménez-Bremont J F, Maruri-López I, Delgado-Sánchez P. Effects of catalase on chloroplast arrangement in Opuntia streptacantha chlorenchyma cells under salt stress. Sci Rep, 2017, 7: 8656.
[70] Choudhury F K, Rivero R M, Blumwald E, Mittler R. Reactive oxygen species, abiotic stress and stress combination. Plant J, 2017, 90: 856−867.
[71] Xing X, Zhou Q, Xing H, Jiang H, Wang S. Early abscisic acid accumulation regulates ascorbate and glutathione metabolism in soybean leaves under progressive water stress. J Plant Growth Regul, 2016, 35: 865−876.
[72] 牟舒敏, 張麗娟, 李紅兵, 關(guān)月明, 可慶波, 張歲岐, 郭尚洙, 鄧西平. 三種轉(zhuǎn)基因甘薯響應(yīng)PEG-6000 模擬干旱脅迫的生理性差異. 植物生理學(xué)報, 2023, 59: 1339−1350.Mou S M, Zhang L J, Li H B, Guan Y M, Ke Q B, Zhang Y Q, Guo S S, Deng X P. Physiological differences among three transgenic sweetpotatoes in response to PEG-6000-mimicked drought stress. J Plant Physiol, 2023, 59: 1339−1350 (in Chinese with English abstract).
文章摘自: 李聞娟,王利民,齊燕妮,趙瑋,謝亞萍,黨照,趙麗蓉,李雯,徐晨夢,王琰,張建平.亞麻LuWRI1a在旱鹽脅迫響應(yīng)中的功能分析[J/OL].作物學(xué)報.1-14[2024-02-20]. https://link.cnki.net/urlid/11.1809.s.20240219.1923.028
